Developing targeted therapies for neurodevelopmental and neurodegenerative diseases

Corporate Presentation
Christopher U Missling, PhD
President & CEO
September 2017

Nasdaq: AVXL
Safe Harbor

This presentation contains forward-looking statements made within the meaning of the Private Securities Litigation Reform Act of 1995 by Anavex™ Life Sciences Corp. and its representatives. These statements can be identified by introductory words such as “expects,” “plans,” “intends,” “believes,” “will,” “estimates,” “forecasts,” “projects,” or words of similar meaning, and by the fact that they do not relate strictly to historical or current facts. Forward-looking statements frequently are used in discussing potential product applications, potential collaborations, product development activities, clinical studies, regulatory submissions and approvals, and similar operating matters. Many factors may cause actual results to differ from forward-looking statements, including inaccurate assumptions and a broad variety of risks and uncertainties, some of which are known and others of which are not. Known risks and uncertainties include those identified from time to time in reports filed by Anavex Life Sciences Corp. with the Securities and Exchange Commission, which should be considered together with any forward-looking statement. No forward-looking statement is a guarantee of future results or events, and one should avoid placing undue reliance on such statements. Anavex Life Sciences Corp. undertakes no obligation to update publicly any forward-looking statements, whether as a result of new information, future events or otherwise. Anavex Life Sciences Corp. cannot be sure when or if it will be permitted by regulatory agencies to undertake clinical trials or to commence any particular phase of clinical trials. Because of this, statements regarding the expected timing of clinical trials cannot be regarded as actual predictions of when Anavex Life Sciences Corp. will obtain regulatory approval for any “phase” of clinical trials. We also cannot be sure of the clinical outcome for efficacy or safety of our compounds. Potential investors should refer to the risk factors in our reports filed on Edgar.
Anavex Investment Highlights

FDA granted Orphan status to ANAVEX™ 2-73 for Rett syndrome; Clinical trial Q4 2017
- Orally available novel sigma-1 receptor (S1R) agonist with strong IP (COM to 2033)
- S1R linked to cellular homeostasis and plasticity relevant to CNS disorders

Safety with signals of efficacy established in Phase 2a Alzheimer’s Disease trial
- 54 subjects treated with ANAVEX 2-73 (Phase 1 and Phase 2a)

Preclinical validation in other orphan and larger CNS diseases
- Portfolio of clinical and preclinical compounds varying in S1R and muscarinic binding kinetics

Partnerships with RettSyndrome.org, Michael J. Fox Foundation, FRAXA, and FAST
- Clinical studies focused on pursuing fastest path to market

Near term clinical advancements
- 4Q 2017 Phase 2a Alzheimer’s disease – PK/PD data
- 4Q 2017 Phase 2 clinical trial in Rett syndrome
- 4Q 2017 Phase 2 clinical trial in Parkinson’s disease
- 4Q 2017 Phase 2/3 clinical trial in Alzheimer’s disease

Cash to fund operations over the next 2 years
Neurodegenerative and Neurodevelopmental Pipeline Overview

<table>
<thead>
<tr>
<th>CANDIDATE</th>
<th>PRECLINICAL</th>
<th>PHASE 1</th>
<th>PHASE 2</th>
<th>PHASE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAVEX™ 2-73</td>
<td>* RETT SYNDROME [Repsyndrome.org]</td>
<td>ALZHEIMER’S DISEASE</td>
<td>PARKINSON’S DISEASE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFANTILE SPASMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRAGILE X [FRAXA]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANGELMAN’S [FAST]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAVEX™ 3-71 (AF710B)</td>
<td>* FRONT. DEMENTIA (FTD)</td>
<td>ALZHEIMER’S DISEASE</td>
<td>PARKINSON’S DISEASE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAVEX™ 1-41</td>
<td>DEPRESSION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STROKE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARKINSON’S DISEASE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALZHEIMER’S DISEASE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAVEX™ 1066</td>
<td>VISCERAL PAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACUTE & NEUROPATHIC PAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CANCER (PANCREAS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* = Orphan Drug Designation by FDA
The Sigma-1 Receptor (S1R): From Gene to Therapeutic Target

Lack of S1R exacerbates disease progression\(^1\)

Sigma-1 Receptor is an integral membrane protein involved in cell homeostasis and cellular stress response\(^2\)

Endogenous S1R agonists activate the Sigma-1 Receptor under cell stressed conditions\(^3,4,5\)

ANAVEX 2-73 is a S1R agonist and activates the Sigma-1 Receptor

Enhancing activation of endogenous S1R with ANAVEX 2-73 improves disease symptoms and underlying pathophysiology

Sigma-1R Agonists MoA: Restoring Homeostasis

ANAVEX 2-73

Sigma-1R helping / stimulating own body to regain functionality

Adapted from Miki et al, Dec 9. doi: 10.1111/neup.12080 Neuropathology 2013; Glembotski et al., Circulation Research. 2007;101:975-984
Unmet Medical Need in Rett Syndrome (RTT)

There are no current treatments for RTT
Affects approximately 16,000 females in U.S.
 1:10-15K females worldwide
RTT is primarily caused by a MECP2 mutation in X chromosome
 Males die before birth or early in infancy
For females who survive infancy, Rett syndrome leads to a deficiency in motor learning, cognitive impairment and seizures

Maria Chahrour, Huda Zoghbi., The Story of Rett Syndrome: From Clinic to Neurobiology, Science Direct (2007); D.Valenti et al., Neuroscience and Biobehavioral Reviews 46 (2014) 202–217
De Novo MECP2 Mutation Identified as Main Genetic Cause in Rett Syndrome

MECP2 modulates expression of BDNF (brain-derived neurotrophic factor)

Mutation in MECP2 occurs in 95% of classic Rett

Dysregulation of BDNF in Rett syndrome stalls neuronal development, synaptogenesis and plasticity

Administration of ANAVEX 2-73 significantly restores BDNF expression in the hippocampus to the same levels observed in vehicle-treated wild-type mice in the Fmr1 KO mouse model (p<0.05, KO vehicle vs. KO ANAVEX 2-73)

2) D.Valenti et al., Neuroscience and Biobehavioral Reviews 46 (2014) 202–217
ANAVEX 2-73 in MECP2 Rett Syndrome Mouse Model

Clasping at 8 weeks

Clasping at 12 weeks

Mice treated with ANAVEX 2-73 (30 mg/kg) clasped less than vehicle-treated mutant mice (p<0.05 at 8 and 12 weeks)

Presented at 2016 Epilepsy Pipeline Conference, 2016 Rett Syndrome Symposium
Significant Improvement in Multiple Movement Impairments

Rotarod

Motor Coordination and exercise capacity are assessed: ANAVEX 2-73 treated mice took significantly more time to fall off rod & fell at higher speeds compared to vehicle-treated mutant mice.

Neurocube

Platform that employs computer vision to detect changes in gait geometry and gait dynamics: Gait, Correlation, Body Motion demonstrate significant improvement.

Startle

Wild type (WT) mice have a higher startle response compared to impaired mice: ANAVEX 2-73 treated mice showed a significant increase in startle response compared to vehicle-treated mutant mice.

<table>
<thead>
<tr>
<th></th>
<th>WT vehicle v.</th>
<th>Het vehicle v.</th>
<th>Het vehicle v.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Het vehicle</td>
<td>Het AV2-73, 10 mg/kg</td>
<td>Het AV2-73, 30 mg/kg</td>
</tr>
<tr>
<td>Overall</td>
<td>90, p=0</td>
<td>53, p> 0.69</td>
<td>62, p> 0.24</td>
</tr>
<tr>
<td>GAIT</td>
<td>78, p< 0.01</td>
<td>63, p> 0.09</td>
<td>69, p< 0.05</td>
</tr>
<tr>
<td>Paw Features</td>
<td>91, p< 0.001</td>
<td>52, p> 0.78</td>
<td>55, p> 0.56</td>
</tr>
<tr>
<td>Correlation</td>
<td>53, p> 0.66</td>
<td>56, p> 0.40</td>
<td>76, p< 0.005</td>
</tr>
<tr>
<td>Body Motion</td>
<td>71, p< 0.02</td>
<td>60, p> 0.20</td>
<td>81, p< 0.003</td>
</tr>
<tr>
<td>Paw Positioning</td>
<td>84, p< 0.0001</td>
<td>53, p> 0.57</td>
<td>57, p> 0.36</td>
</tr>
</tbody>
</table>

Presented at 2016 Epilepsy Pipeline Conference, 2016 Rett Syndrome Symposium
ANAVEX 2-73: Dose-Dependent Anti-Seizure Effects

Significant Seizure Reduction with ANAVEX2-73 in Angelman Seizure Model ANAVEX 2-73 (10 mg/kg ip dosed daily for 14 days)

Significant Seizure Reduction with ANAVEX2-73 in both MES and PTZ-Induced Seizure Models p<0.001

Vehicle 10 mg/kg (p.o.) 30 mg/kg (p.o.) 100 mg/kg (p.o.)

MES-induced convulsions#

PTZ-induced convulsions

Significant Reduction Number of Spasms with Pre-treated ANAVEX2-73 in Infant Rat Model (30mg/kg ip)

Presented at AES Meeting 2015, # results have been confirmed by the ETSP screening program; Presented at AEDD 2017
ANAVEX 2-73 Phase 2 Rett Syndrome Study Design

Randomized, Double-Blind, Placebo-Controlled Study of ANAVEX 2-73

4 weeks Baseline Observation Period

N<90

Randomization to 1 of 3 arms

AV 2-73: Low dose

AV 2-73: High dose

Placebo

8 weeks Full Dose Treatment Period

AV 2-73: Low dose

AV 2-73: High dose

Placebo

12 Weeks Voluntary Open Label

Baseline Observation Period

Titration Treatment Period

Full Treatment Period

Initial screen
- ANAVEX 2-73 was evaluated in the 6-OHDA Parkinson’s disease model
- ANAVEX 2-73 significantly improves motor behaviors compared to a double-blind control group (saline)
 - (A) Spontaneous rotation activity
 - (B) Cylinder test of forelimb use asymmetry
 - (C) Stepping test of forelimb use asymmetry
ANAVEX 2-73 Normalizes Pathophysiological Biomarkers

ANAVEX 2-73 significantly decreased the expression of CD68 (marker of activated microglia) in the substantia nigra.

ANAVEX 2-73 significantly increases tyrosine-hydroxylase fibers (marker of dopaminergic neurons) in the striatum.

These results support the hypothesis that pharmacological stimulation of the sigma-1 receptor may have both disease-modifying and symptomatic effects in Parkinson’s disease.

Cenci et al., presented at World Parkinson Congress 2016
Phase 2a results demonstrate a favorable safety, bioavailability, dose-response curve and tolerability/risk profile at doses between 10mg and 50mg of oral daily ANAVEX 2-73 during 57 weeks.

- Primary endpoints met with favorable safety and tolerability.
- Secondary endpoints met with supportive exploratory biomarker, cognition and functional measures correlating.
 - Low-High dose was statistically significant to affect MMSE-Δ and EEG/ERP-Δ scores with $\text{MMSE-Δ (} p=0.0285 \text{)}$ and $\text{EEG/ERP-Δ (} p=0.0168 \text{)}$, respectively.

Macfarlane, presented at CTAD 2016
ANAVEX 2-73 Phase 2a Alzheimer’s Disease

Randomized, Crossover Assignment, Open Label Study of ANAVEX 2-73 (ANAEX™2-73-002 Study#)

Baseline

N = 32
- Mild-to-moderate AD patients
- Baseline MMSE: 16-28

Randomized to 1 of 2 arms

36 Days (5 Weeks)
Two-period, cross-over treatment
✓ Safety, MTD
✓ Bioavailability of ANAVEX 2-73
✓ Dose-effect relationship
✓ PK/PD modeling

Oral → IV
IV → Oral

52 Weeks
Voluntary open label extension
✓ Safety
✓ Multiple doses of ANAVEX 2-73
✓ Dose-effect relationship
✓ PK/PD modeling

Oral

PK/PD Data Expected 4Q 2017

ClinicalTrials.gov Identifier: NCT02244541
57 Week Safety Profile of ANAVEX™ 2-73 Phase 2a (MTD Study)

- The most common AEs at highest doses were mild dizziness followed by mild headache
 - Consistent with Blood Brain Barrier (BBB) penetration
 - 98% of all AEs were mild or moderate and reversible with 76% being Grade 1
 - 2% were Grade 3
 - There were no Grade 4 and 5 events
- AE profile similar to that of healthy volunteer Phase 1 data
- No differences in blood pressure or resting heart rate
- Clinical laboratory parameters, vital signs, and 12-lead ECG did not show any clinically relevant or dose-dependent changes

Voges et al., presented at CNS Summit 2014; Macfarlane, presented at CTAD 2016
57 Week Longitudinal Cognition MMSE and Function ADCS-ADL

- Unblinded, uncontrolled, and small N, but encouraging observations
- 57 week longitudinal MMSE and ADCS-ADL without dose optimization
- Cognition MMSE and Quality of life score ADCS-ADL (Activities of Daily Living) maintained close to baseline through week 57

Macfarlane, presented at CTAD 2016
Comparison to historical control subjects with mild-to-moderate AD with comparable MMSE baseline, assigned to the placebo arm from pooled cohort study conducted by the Alzheimer Disease Cooperative Study Group, age adjusted#
Patient Characterization to Identify Phase 2/3 Parameters

Hypothesis

Advanced Data Analytics using KEM®

Population PK

Scores
- **Baseline**
- **Evolution**

Clinical assessment, Vital signs, co-medication, ...

New

FGS: Full Genomic Sequencing

DNA FGS

RNA FGS

Actionable optimized Phase 2/3 clinical trial parameters

Population
- PK
- MMSE
- ADCS-ADL
- COGSTATE
- EEG/ERP
- HAM-D

Scores
- MMSE
- ADCS-ADL
- COGSTATE
- EEG/ERP
- HAM-D

Scores Evolution

Clinical assessment, Vital signs, co-medication, ...
Stepwise Strategy to Address Major Unmet CNS Indications

✓ Valuable feature of sigma-1R agonists are their favorable safety profiles, particularly in humans due to the modulatory action of sigma-1R

✓ Selectively only under pathological conditions while sparing normal physiological activity, thus limiting adverse side effects#

✓ Rational clinical strategy targeting first shorter-term endpoints. Goal: Reduction of clinical development risk

✓ Later expansion of indication scope with disease modification or prevention trial – ANAVEX 2-73 has already demonstrated preclinically to prevent symptoms of Alzheimer’s##

Financial Position and Near Term Catalysts

- Cash (as of June 30, 2017): $24.8M; No debt
- The company is well capitalized to achieve clinical readouts

<table>
<thead>
<tr>
<th>up to 2017</th>
<th>Granted Orphan Drug Designations for the following indications: Rett syndrome, Infantile spasms and Frontotemporal dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase 2a – Reported 57 week data at CTAD scientific meeting</td>
</tr>
<tr>
<td></td>
<td>4Q 2017 Phase 2a Alzheimer’s disease – PK/PD data</td>
</tr>
<tr>
<td></td>
<td>4Q 2017 Phase 2 clinical trial in Rett syndrome</td>
</tr>
<tr>
<td></td>
<td>4Q 2017 Phase 2 clinical trial in Parkinson’s disease</td>
</tr>
<tr>
<td></td>
<td>4Q 2017 Phase 2/3 clinical trial in Alzheimer’s disease</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2018</th>
<th>2018 Potential for several clinical read-out in 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ongoing in-licensing/out-licensing review to optimize value of pipeline</td>
</tr>
</tbody>
</table>
Expertise in Drug Development, Neurodegenerative Diseases

Management Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher U. Missling, PhD</td>
<td>President & CEO</td>
<td>CURIS, Immunogen Inc.</td>
</tr>
<tr>
<td>Emmanuel O Fadiran, RPh, PhD</td>
<td>SVP of Regulatory Affairs</td>
<td>FDA, University of Strathclyde Glasgow</td>
</tr>
<tr>
<td>Tasos Zografidis, IMS, PhD</td>
<td>VP of Clinical Operations</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Ulrich Eben, PhD</td>
<td>VP of Preclinical Operations</td>
<td>Wyeth</td>
</tr>
<tr>
<td>Daniel Klamer, PhD</td>
<td>VP of Business Development & Scientific Strategy</td>
<td>Vertex, Aventis, URI SEARCH, RetrPhin, NeuroSearch</td>
</tr>
</tbody>
</table>

AFDA Commissioner’s award of Excellence

Scientific Advisory Board Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution/University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffrey Cummings, MD</td>
<td></td>
<td>Cleveland Clinic</td>
</tr>
<tr>
<td>Paul Aisen, MD</td>
<td></td>
<td>USC University of Southern California</td>
</tr>
<tr>
<td>Harald Hampel, MD, PhD</td>
<td></td>
<td>University of Pittsburgh (UPMC)</td>
</tr>
<tr>
<td>Norman Relkin, MD, PhD</td>
<td></td>
<td>Weill Cornell Medicine</td>
</tr>
<tr>
<td>Abraham Fisher, PhD</td>
<td></td>
<td>Weizmann Institute of Science</td>
</tr>
<tr>
<td>Jacqueline French, MD</td>
<td></td>
<td>NYU</td>
</tr>
<tr>
<td>Andrew Cole, MD</td>
<td></td>
<td>Harvard Medical School</td>
</tr>
<tr>
<td>Tanya Simuni, MD</td>
<td></td>
<td>Northwestern University Feinberg School of Medicine</td>
</tr>
<tr>
<td>Daniel Weintraub, MD</td>
<td></td>
<td>Perelman School of Medicine University of Pennsylvania</td>
</tr>
<tr>
<td>Kalpana Merchant, PhD</td>
<td></td>
<td>Northwestern University Feinberg School of Medicine</td>
</tr>
</tbody>
</table>
Contact Us

Corporate Office:
Anavex™ Life Sciences Corp.
51 West 52nd Street, 7th floor
New York, NY 10019
1-844-689-3939

Shareholder & Media Relations:
Clayton Robertson
The Trout Group
(646) 378-2900
crobertson@troutgroup.com
www.anavex.com
NASDAQ: AVXL

ANAVEX is a trademark of Anavex Life Sciences Corp.
BDNF Val66met Polymorphism implicated in Neurodevelopmental and Neurodegenerative Disorders

BDNF Val66met polymorphism correlates with:

- Higher seizure frequency and severity of Rett syndrome³
- Cognitive decline and increased Aβ accumulation in Alzheimer’s disease¹,²

3) Zeev BB et al. Neurology. 2009 Apr 7;72(14):1242-7
Supportive Exploratory Biomarker, Cognition and Function Measures: PART A and PART B Data of All Patients

- Exploratory Physiologic Biomarker measures:
 - EEG/ERP (P300) measures cortical network performance

- Exploratory Cognitive measures:
 - Cogstate battery
 - MMSE

- Exploratory Behavioral and Functional measures:
 - HAM-D
 - ADCS-ADL

The following data represents all evaluable patients.
P300 Decline Halted with ANAVEX 2-73 – Expected to Decline in Alzheimer’s Disease

- P300 amplitude recovers to healthy levels over 53 weeks
- Temporary improvement in P300 amplitude seen with donepezil therapy persists with ANAVEX 2-73

Theoretical comparisons to historical models of disease progression are for illustrative purposes
Comparable AD Study: Standard of Care (SoC) vs ANAVEX 2-73 Study

Data from *Australian Imaging Biomarkers and Lifestyle* (AIBL-ROCS-AD) study evaluating mild-to-moderate Alzheimer’s disease patients on SoC (Standard of Care) acetylcholinesterase medications and/or memantine with Cogstate battery #

<table>
<thead>
<tr>
<th>Baseline data:</th>
<th>SoC (AIBL-ROCS-AD)</th>
<th>ANAVEX 2-73</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants (n)</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>Age (mean)</td>
<td>78.6</td>
<td>71.0</td>
</tr>
<tr>
<td>% Female</td>
<td>48.8</td>
<td>40.6</td>
</tr>
<tr>
<td>ApoE4 carrier</td>
<td>68%</td>
<td>53%</td>
</tr>
<tr>
<td>MMSE (mean)</td>
<td>21.2</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Computerized Cogstate Test Battery: No Rater Bias

Cogstate’s test battery for Alzheimer’s disease measures the following core cognitive domains:

- Processing speed ➔ Detection Test
- Attention ➔ Identification Test
- Working memory ➔ One Back Test
- Visual learning ➔ One Card Learning Test
- Verbal learning ➔ International Shopping List Test (ISLT)
- Verbal memory ➔ Delayed International Shopping List Test (ISLT-delay)

Cogstate’s computerized battery includes tests that have been utilized previously in clinical trials and have demonstrated repeated testing reliability#
Side-by-Side Standard of Care (SoC) vs ANAVEX 2-73

- Significant larger magnitude of Effect Size (ES) change from baseline (Cohn’s d) with ANAVEX 2-73

Standard of Care (SoC) acetylcholinesterase medications and/or memantine
Examples of Continued Improvements and Reported Events ‘Therapeutic Response’ during 57 Weeks

Examples of MMSE "Strong" Patient Responders

<table>
<thead>
<tr>
<th>PATIENT</th>
<th>EVENTS: THERAPEUTIC RESPONSE UNEXPECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>101001</td>
<td>MORE ALERT REGARDING SURROUNDINGS</td>
</tr>
<tr>
<td>101002</td>
<td>FEELS MUCH HAPPIER MAKING JOKES</td>
</tr>
<tr>
<td>101003</td>
<td>MUCH HAPPIER WHEN ATTENDING CLINIC APPTS AND ENJOYS MAKING JOKES AND ENGAGES WELL IN CONVERSATION</td>
</tr>
<tr>
<td>101004</td>
<td>BETTER HAND COORDINATION. CALMER AND MORE COMMUNICATIVE</td>
</tr>
<tr>
<td>101006</td>
<td>IMPROVING MOODS. READING MORE BOOKS</td>
</tr>
<tr>
<td>101007</td>
<td>ABILITY TO PLAY THE PIANO AND READ MUSIC NOTES AT ABOUT 9 MONTHS INTO TRIAL. SHE USED TO PLAY THE PIANO AT AGE 5 AND LOST HER ABILITY PRE-ALZHEIMER TRIAL</td>
</tr>
<tr>
<td>101010</td>
<td>ABLE TO FOLLOW PLOT WHEN WATCHING MOVIES WHEREAS PREVIOUSLY COULD NOT</td>
</tr>
<tr>
<td>101010</td>
<td>MORE COMPASSION FOR CHILDREN</td>
</tr>
<tr>
<td>101011</td>
<td>WIFE THINKS PATIENT IS A BIT MORE CHEERFUL</td>
</tr>
<tr>
<td>101013</td>
<td>ABLE TO DO MUCH MORE HOUSEWORK THAN BEFORE</td>
</tr>
<tr>
<td>101013</td>
<td>MORE DRIVEN AND UPBEAT LESS ANXIOUS ACCORDING TO CARER</td>
</tr>
<tr>
<td>101014</td>
<td>AN INTERNATIONAL ARTIST WHO RESUMED HER PAINTING ABILITIES AND NOW HAVING AN EXHIBITION IN NOV 2016. WRITTEN A 3 PAGE LETTER TO LONG LOST BROTHER</td>
</tr>
<tr>
<td>101015</td>
<td>PLAYING MORE GOLF NOW BY HIMSELF. MORE CONFIDENT AT GOING OUT BY HIMSELF</td>
</tr>
<tr>
<td>101017</td>
<td>ENJOYED HER TRIP TO BELGIUM - TALKS ABOUT SOME BITS OF HER TRIP</td>
</tr>
<tr>
<td>102001</td>
<td>IMPROVED ENGAGEMENT WITH FAMILY/FRIENDS/OUTSIDE WORLD</td>
</tr>
<tr>
<td>102008</td>
<td>IMPROVEMENT IN MOOD</td>
</tr>
<tr>
<td>102010</td>
<td>FEELING GREAT - IMPROVEMENT IN COGNITION AND MOOD, BALANCE AND GAIT HAS IMPROVED</td>
</tr>
<tr>
<td>103001</td>
<td>PATIENT REMEMBERING SOMETHING HE WOULDN'T HAVE PREVIOUSLY</td>
</tr>
</tbody>
</table>
HAM-D: Reduction of Insomnia, Anxiety and other Symptoms

<table>
<thead>
<tr>
<th>Improved Items of HAM-D</th>
<th>Scored Improvement Count</th>
<th>in [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insomnia</td>
<td>8</td>
<td>29%</td>
</tr>
<tr>
<td>Work and activities</td>
<td>6</td>
<td>21%</td>
</tr>
<tr>
<td>Anxiety (psychic and somatic)</td>
<td>5</td>
<td>18%</td>
</tr>
<tr>
<td>Agitation</td>
<td>4</td>
<td>14%</td>
</tr>
<tr>
<td>Depressed</td>
<td>4</td>
<td>14%</td>
</tr>
<tr>
<td>Insight</td>
<td>3</td>
<td>11%</td>
</tr>
<tr>
<td>Hypochondriasis</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>Loss of libido or other genital symptoms</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>Guilt</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

HAM-D Mean ± SEM

- **Baseline**: 3.0
- **31 week**: 1.5

p<0.05
ANAVEX 2-73: Robust Correlation of Cognition, Function and Behavior Response

ANAVEX 2-73 Response cluster in a homogeneous manner: Consistent response across multiple domains

- Principal component analysis of the Δ sub-scores between week 31 and baseline for MMSE (MM), ADCS-ADL (AD), and HAM-D (HA)
 - Good = increasing MM & AD, decreasing HA
 - Bad = decreasing (MM & AD), increasing HA
1. ERP peak measures (P300): fundamental measures of synaptic network performance
2. ERP target detection task measures: direct measures of attention, speed of brain processing, and simple behavioral performance
4. Psychometric measures (MMSE): cognitive measures
5. Behavioral measures (ADCS-ADL): behavioral measures

Each of these metrics measures a higher level of brain function
ANAVEX 2-73 TARGETED INDICATIONS

PRECLINICAL VALIDATION
- Parkinson's disease*
- Rett Syndrome**
- Fragile X***
- Angelman syndrome****
- Multiple sclerosis*****
- Depression
- Anxiety
- Epilepsy seizures
- Infantile spasms

CLINICAL VALIDATION PHASE 2a
- Population PK

CLINICAL CONFIRMATION PHASE 2
- Placebo-controlled

CLINICAL CONFIRMATION PHASE 2/3
- Placebo-controlled

Alzheimer's disease
- Rett syndrome
- Parkinson's disease

Clinical funding:

* MJFF
** RettSyndrome.org
*** FRAXA
**** CUREAngelman.org
***** Wayne State/Biogen
Phase 2a Study Design

PART A
1. Estimate the maximal tolerated dose (MTD)
2. Explore a dose-effect relationship
3. Estimate the bioavailability of ANAVEX 2-73

PART B
1. Establish continued safety and tolerability of ANAVEX 2-73
2. Explore a dose-effect relationship

- **1st Period**: Intravenous and oral treatment
- **Wash Out Period**: 36 days
- **2nd Period**: Intravenous and oral treatment
- **52 weeks**: All patients on oral daily treatment
Alzheimer’s Disease Progression:
Comparable cognitive decline in open-label studies as in placebo-controlled studies

Progressive decline in cognition:
Open-label study with SoC#

Progressive decline in cognition:
Double-blind placebo-controlled study with SoC##

- Open-label and double-blind controlled studies equivalent for long-term cognition changes

Figure adapted from Doody RS et al (2013) N Engl J Med; 369:341-350 (SoC = Ach inhibitors and/or memantine)
ANAVEX™ 3-71 Significantly Decreases Hallmark Pathologies in 3xTg-Alzheimer’s Disease Model

- 10 month-old 3xTg-AD and WT mice
- administered i.p. with tap water or ANAVEX 3-71 (10 mcg/kg/day) for 2 months

Reversed cognitive impairments in Morris water maze

Reduced Abeta pathology
{Abeta40, Abeta42 and Abeta plaques}

Reduced neuroinflammation
{activated astrocytes (GFAP) and microglia (Iba-1)}

Reduced tau pathology

Source: Fisher et al., Neurodegenerative Diseases 2015 DOI: 10.1159/000440864
Pathological GSK-3β Activation can be Inhibited with ANAVEX 2-73

Active GSK-3β has been found in AD brains with neurofibrillary changes and an increase in tau hyperphosphorylation, neurodegeneration and spatial learning deficits. Activated GSK-3β also stimulates the amyloidogenic processing of amyloid precursor protein (APP) by β- and γ-secretases.

Injection of Aβ_{25-35} yields a hyper-inflammatory state that is accompanied by increases in GSK-3β phosphorylation in the hippocampus -- An Effect reduced by ANAVEX 2-73

Possible means to impact underlying pathology of various neurodegenerative and neurodevelopmental disorders

Source: Inestrosa et al. Journal of Molecular Cell Biology (2014), 6, 64–74
Common in both Neurodegenerative & Neurodevelopmental Diseases: ER-Mitochondria Axis Disruption...sigma-1R Restores Association ...

Normally quiescent S1Rs become activated during periods of cellular stress, and ANAVEX 2-73 is well-positioned to enhance this response.

RARE DISEASES: MORE COMMON THAN YOU THINK?

Rare diseases are defined as those affecting a small percentage of a population – fewer than 200,000 in the U.S. and fewer than 1 in 2,000 in Europe.

- ≈7,000 diseases are classified as rare.
- More than 80% of rare diseases are caused by faulty genes.
- More than 300 million people worldwide have a rare disease.
- 95% of rare diseases have no FDA-approved drug treatment.

Sources: GlobalGenes.org, PhRMA, NIBR
NEURODEGENERATIVE DISEASES

The global cost of dementia is estimated to be US$ 818 billion

More than 10 Million people are believed to have Parkinson's disease

Economic burden of Alzheimer's disease (AD) care is estimated to reach $1.5 trillion by 2050

FDA has approved 4 drugs for AD that only temporarily slow worsening of symptoms for 6-12 months in ~50% of patients

An estimated 46 Million people worldwide live with dementia